Neues aus Wissenschaft und Naturschutz

17.01.2023, Universität Wien
Erwärmung des Ozeans ließ Fische in der Dämmerzone schrumpfen
In einer Zwischeneiszeit im mittleren Pleistozän reduzierten Fische in der mesopelagischen Zone ihre Körpergröße um bis zu 35 Prozent – Wärmere Meere könnten demnach zukünftig weniger CO2 aus der Atmosphäre aufnehmen
Die Fische in der nur mehr schwach durchleuchteten Dämmerzone der Ozeane, also in Tiefen von 200 bis 1.000 Meter, schrumpften in einer Zwischeneiszeit im mittleren Pleistozän (vor ca. 800.000 bis 700.000 Jahren) durch die Erwärmung des Ozeans deutlich: In vier Grad wärmerem Wasser reduzierten sie ihre Körpergröße um bis zu 35 Prozent, so eine aktuelle Studie unter der Leitung von Konstantina Agiadi vom Institut für Paläontologie der Universität Wien, die aktuell in der Fachzeitschrift „Proceedings of the Royal Society B: Biological Sciences“ veröffentlicht wurde. Die Reduktion der Körpergröße dürfte sich auch negativ auf die Fähigkeit der Ozeane auswirken, Kohlendioxid aus der Atmosphäre aufzunehmen.
Laternenfische und andere Fische, die in der Dämmerzone der Ozeane – dem so genannten Mesopelagial in 200 bis 1000 Meter Tiefe – leben, sorgen für die Stabilität des Ökosystems, reduzieren atmosphärisches Kohlendioxid und bilden ein riesiges Nahrungsreservoir. Dennoch ist über ihre Reaktion auf die Klimaerwärmung wenig bekannt. Die Geologin und Paläontologin Konstantina Agiadi von der Universität Wien leitete eine vom Österreichischen Wissenschaftsfonds (FWF) finanzierte Studie, die dieser Frage anhand von Fossilien aus einer Zwischeneiszeit des mittleren Pleistozäns vor ca. 800.000 bis 700.000 Jahren nachging. Die Ergebnisse, die das internationale Team in der Fachzeitschrift „Proceedings of the Royal Society B: Biological Sciences“ veröffentlichte, zeigen, dass die Fische in der Dämmerzone durch die Erwärmung der Ozeane insgesamt schrumpfen – und zwar um bis zu 35 Prozent.
Für Fische, die im lichtdurchfluteten Teil der Ozeane, also zumeist in den obersten 200 Metern leben, wurde in anderen Studien bis zum Jahr 2050 bereits ein Größenrückgang von 14 bis 24 Prozent gegenüber den frühen 2000er Jahren vorhergesagt. „Bisher gab es jedoch kaum Studien, die sich mit den Folgen der Klimaerwärmung auf die tieferen Meeresschichten, die Dämmer- oder mesopelagische Zone, befassten“, sagt Agiadi. Die Fische dieser Dämmerzone spielen jedoch eine zentrale Rolle: So übersteigen alleine Laternenfische – eine Gruppe kleiner mesopelagischer Fische, die ihren Namen der Fähigkeit verdanken, ihr eigenes blassblaues, grünes oder gelbes Licht zu erzeugen und mehr als die Hälfte der Fischbiomasse in der Tiefsee ausmachen – die weltweiten jährlichen Fischereifänge um das Hundertfache.
Kleine Fische mit großen Auswirkungen
„Zudem leisten mesopelagische Fische, insbesondere Laternenfische, einen wichtigen Beitrag zur so genannten biologischen Kohlenstoffpumpe – einem natürlichen Mechanismus zur Reduzierung des atmosphärischen Kohlendioxids“, erklärt Agiadi. Dies funktioniert in Form eines Kreislaufs: Tagsüber nehmen die Organismen des Phytoplanktons durch Photosynthese CO2 aus der Atmosphäre auf. In der Nacht, wenn ihre Fressfeinde wie größere Fische und Meeressäuger sie nicht sehen können, wandern dann die Laternenfische Hunderte von Metern an die Meeresoberfläche, um dieses Plankton zu fressen und transportieren so Kohlenstoff von der Oberfläche in die Tiefsee. „Das Schrumpfen der mesopelagischen Fische dürfte sich daher auch in näherer Zukunft negativ auf die Fähigkeit der Ozeane auswirken, atmosphärisches Kohlendioxid aufzunehmen – und das sind leider mit Bezug auf die aktuelle Klimaerwärmung alarmierende Nachrichten“, betont Martin Zuschin, der Leiter des Instituts für Paläontologie an der Universität Wien und Ko-Autor der Studie.
Fisch-Otolithen als Schlüssel
Untersucht wurde die Entwicklung der Körpergröße anhand von Fossilien aus Eiszeiten und einer Zwischeneiszeit des mittleren Pleistozäns, und zwar genauer gesagt anhand der Otolithen: Gehörsteinchen aus dem Innenohr von Knochenfischen, die den Fischen die Wahrnehmung von Schall und Gleichgewicht ermöglichen. „Diese kleinen, etwa Millimeter bis wenige Zentimeter große Steinchen, bleiben für gewöhnlich im Sedimentgestein erhalten“, erklärt Konstantina Agiadi vom Institut für Paläontologie. Die Morphologie der Otolithen ist spezifisch für jede Fischart, und ihre Größe spiegelt direkt die Größe des Fischindividuums wider, von dem sie stammen. „Dadurch können wir anhand der Gehörsteinchen gut vergangene Fischfaunen rekonstruieren“, so Agiadi. In der vorliegenden Studie entnahmen die Forscher*innen Fisch-Otolithen aus außergewöhnlichen Sedimentformationen von der Insel Rhodos in der Ägäis, die auf die Zeit vor 800.000 bis 700.000 Jahren datiert werden, um Veränderungen in der Größe der Fische in zwei Eiszeiten und einer Zwischeneiszeit zu ermitteln. Bei der Untersuchung zeigte sich, dass die Fische der Zwischeneiszeit, als die globale Temperatur um 4 °C gestiegen war, um 35 Prozent kleiner waren.
Originalpublikation:
Palaeontological evidence for community-level decrease in mesopelagic fish size during Pleistocene climate warming in the eastern Mediterranean
by Konstantina Agiadi, Frédéric Quillévéré, Rafal Nawrot, Theo Sommeville, Marta Coll, Efterpi Koskeridou, Jan Fietzke, Martin Zuschin
https://doi.org/10.1098/rspb.2022.1994

18.01.2023, Max-Planck-Institut für chemische Ökologie
Die Einlagerung von Pflanzengiften schwächt bei Monarchfaltern die Warnfärbung ihrer Flügel ab
Monarchfalter, die zur Abwehr von Fressfeinden große Mengen an Pflanzentoxinen einlagern, tun dies auf Kosten oxidativer Schäden, die die Auffälligkeit ihrer orangefarbenen Flügel beeinflussen.
Ein internationales Forschungsteam unter Beteiligung des Max-Planck-Instituts für chemische Ökologie in Jena hat herausgefunden, dass die auffälligen orange-schwarzen Flügel von Monarchfaltern nicht nur Räubern signalisieren, dass diese Schmetterlinge hochgiftig sind. Vielmehr verursachen die Einlagerung von Giften und die Bildung der bunten Flügel Kosten. Das Team zog Raupen der Falter auf ihren Futterpflanzen der Gattung Asclepias auf, die unterschiedliche Mengen an Giftstoffen enthielten. Monarchfalter, die als Raupen hohe Mengen an giftiger Nahrung aufgenommen hatten, wiesen nach der Einlagerung dieser Giftstoffe in ihren Körpern ein hohes Maß an oxidativen Schäden auf und waren in ihrer Färbung weniger auffällig. In der Studie konnte experimentell gezeigt werden, dass die Einlagerung von Giften auch für Insekten, die auf ihre Futterpflanzen hoch spezialisiert sind, kostspielig ist (Proceedings of the Royal Society B – Biological Sciences, January 2023, doi: 10.1098/rspb.2022.2068).
Aposematismus bei Tieren: Je giftiger, desto greller die Farbe?
Monarchfalter (Danaus plexippus) ernähren sich als Raupen von Seidenpflanzen der Gattung Asclepias und speichern die Cardenolide der Pflanzen, eine Gruppe von herzwirksamen Glykosiden, zu ihrer eigenen Verteidigung in ihrem Körper. Die Kombination der Gifte mit den auffälligen orange-schwarzen Flügeln der Monarchfalter wird Aposematismus genannt (abgeleitet von den griechischen Begriffen apo = weg und sema = Signal). Hannah Rowland, Leiterin der Max-Planck-Forschungsgruppe Räuber und giftige Beute am Max-Planck-Institut für chemische Ökologie, erklärt: „Aposematismus funktioniert, weil Räuber lernen, dass sie auffällige Beute besser meiden. Räuber lernen schneller, wenn das visuelle Signal immer gleich ist. Leuchtendes Orange bedeutet: ‚Friss mich nicht‘. Aber andere Forschende und ich haben immer wieder beobachten können, dass aposematische Tiere unterschiedlich starke Warnsignale haben. Daher haben wir uns gefragt, warum es Falter mit blassem und kräftigem Orange gibt. Was bedeutet das, und woher kommt der Unterschied?“
Rowland und ihr Kollege Jonathan Blount von der Universität Exeter untersuchten zusammen mit ihrem internationalen Forschungsteam, ob die Speicherung von Pflanzengiften die körperliche Verfassung Schmetterlings beeinträchtigt. Konkret ging es darum, ob die Einlagerung von Giftstoffen oxidativen Stress verursacht, der auftritt, wenn der Gehalt an Antioxidantien niedrig ist. Da Antioxidantien zur Bildung von Farbpigmenten verwendet werden können, untersuchten sie, ob die Menge der Gifte im Monarchfalter mit seiner visuellen Auffälligkeit und seinem oxidativen Zustand zusammenhängt.
Die Wissenschaftlerinnen und Wissenschaftler zogen Raupen von Monarchfaltern auf vier verschiedenen Seidenpflanzen der Gattung Asclepias auf, die unterschiedliche Gehalte an Cardenoliden aufweisen. Auf diese Weise konnten sie die Menge der aufgenommenen Gifte manipulieren, um anschließend die Konzentrationen von Cardenoliden zu messen, den oxidativen Zustand zu bestimmen und die daraus resultierende Flügelfärbung zu vergleichen.
„Monarchfalter, die größere Mengen an Cardenoliden einlagerten, erlitten höhere oxidative Schäden als diejenigen, die niedrigere Konzentrationen einlagerten. Unsere Ergebnisse gehören zu den ersten, die einen potenziellen physiologischen Mechanismus für oxidative Schäden als Kosten der Gifteinlagerung bei diesen Insekten aufzeigen,“ sagt Hannah Rowland. Die Forschenden fanden auch heraus, dass die Farbe der Flügel männlicher Falter davon abhing, wie viel Gift sie einlagerten und wie viel oxidative Schäden dies zur Folge hatte. Männchen mit den größten oxidativen Schäden zeigten eine abnehmende Farbintensität mit der erhöhten Aufnahme der Giftstoffe, während die Männchen mit den geringsten oxidativen Schäden, am giftigsten und farbintensivsten waren.
Pflanzengifte sind sogar für spezialisierte und aposematische Pflanzenfresser kostspielig
„Es ist eine gängige Meinung, dass auf bestimmte Wirtspflanzen spezialisierte Insekten weniger von der Pflanzenabwehr betroffen sind als Wirtsgeneralisten. Unsere Studie liefert überzeugende Beweise dafür, dass die Einlagerung von Cardenoliden physiologisch kostspielig ist,“ meint Hannah Rowland. „Monarchfalter werden oft als Musterbeispiel für aposematische Tiere gesehen. Unser Experiment zeigt jedoch, dass die Auffälligkeit ihrer Warnfärbung bis zu einem gewissen Grad davon abhängt, wie viel Cardenolide sie einlagern und wie kostspielig dies für sie ist. Zusammengenommen bedeutet dies, dass spezialisierte Pflanzenfresser den Nutzen giftiger Pflanzenstoffe zum Schutz vor eigenen Fressfeinden mit den Kosten abwägen müssen, die diese Gifte verursachen.“ Rowland möchte nun auch die Rolle der Räuber bei den Wechselwirkungen zwischen Pflanze, pflanzenfressender Beute und Räubern weiter untersuchen. Insbesondere möchte sie der Frage nachgehen, ob Räuber die Evolution der Cardenolide, die von den Monarchfaltern aus der Seidenpflanze aufgenommen werden, beeinflussen.
Originalpublikation:
Blount, J. D.; Rowland, H. M.; Mitchell, C.; Speed, M. P.; Ruxton, G. D.; Endler, J. A.; Brower, L. P. (2023). The price of defence: toxins, visual signals and oxidative state in an aposematic butterfly. Proceedings of the Royal Society B – Biological Sciences, 290: 2022.2068, doi: 10.1098/rspb.2022.2068
https://doi.org/10.1098/rspb.2022.2068

18.01.2023, Julius-Maximilians-Universität Würzburg
Blütenmuster machen Hummeln effizienter
Die Suche nach Nektar kostet Insekten viel Energie, sie müssen also möglichst effizient vorgehen. Bunte Muster auf den Blütenblättern helfen dabei kräftig mit.
Ob Malven, Fingerhut oder Vergissmeinnicht: Viele Blüten tragen auffällige Muster, die in der Biologie als Saftmale bezeichnet werden. Denn es wird angenommen, dass die bunten Muster den bestäubenden Insekten den kürzesten Weg zum Nektar zeigen. Das würde die Effizienz der Insekten bei der Nahrungssuche erhöhen und die Pollenausbreitung der Pflanze verbessern.
Ein Team vom Biozentrum der Julius-Maximilians-Universität Würzburg (JMU) hat jetzt erstmals die einzelnen Schritte entschlüsselt, über die Blütenmuster die Effizienz von Erdhummeln (Bombus terrestris) steigern. Insgesamt reduzieren Saftmale die Zeit, die für die gesamte Interaktion mit einer Blüte gebraucht wird, um bis zu 30 Prozent – vom Anflug über das Finden des Nektars bis hin zum Abflug.
Was die Blütenmuster bewirken
Überraschenderweise verkürzen die Blütenmuster nicht die eigentliche Nektarsuche: Nach der Landung auf einer gemusterten Blüte finden die Hummeln nicht schneller zum Nektar als auf einer Blüte ohne Muster. Die Blütenmuster machen aber den Anflug effizienter und sorgen für eine strategisch günstigere Landeposition. Sie wirken wie Markierungen auf einer Landebahn und helfen den Hummeln, ihren Anflug zu koordinieren. Das berichtet das Team um Anna Stöckl und Johannes Spaethe im Journal Functional Ecology.
Die Muster verkürzen auch die Zeit bis zum Abflug: Auf gemusterten Blüten halten sich die Insekten nach dem Nektarsammeln deutlich kürzer auf. „Sehr oft laufen Hummeln für den Abflug an den Rand der Blütenblätter“, erklärt Johannes Spaethe. Womöglich finden sie diesen Startplatz schneller, wenn sie sich an einem Muster orientieren können.
Diese Nachweise gelangen mit Videotracking. Dabei wurden die Besuche von Hummeln auf künstlichen Blüten im Labor analysiert. Die Blüten trugen unterschiedliche Muster oder gar keine; alle waren mit Nektar bestückt.
So geht die Forschung weiter
Als nächstes will das Forschungsteam untersuchen, wie der Glanzeffekt, der bei manchen Blüten auftritt, das Wechselspiel mit bestäubenden Insekten beeinflusst.
Diese Arbeiten laufen in Kooperation mit Casper van der Kooi, der zurzeit als Stipendiat der Humboldt-Stiftung am Biozentrum forscht. Auch Anna Stöckl, die vor kurzem an die Universität Konstanz gewechselt ist und dort eine Emmy-Noether-Nachwuchsgruppe aufbaut, bleibt als Kooperationspartnerin erhalten.
Originalpublikation:
Flower patterns improve foraging efficiency in bumblebees by guiding approach flight and landing. Robin Richter, Alexander Dietz, James Foster, Johannes Spaethe, Anna Stöckl. Functional Ecology, 8. Januar 2023, Open Access: https://doi.org/10.1111/1365-2435.14262

19.01.2023, Leibniz-Institut zur Analyse des Biodiversitätswandels
Gebietsfremde Landschneckenarten nehmen exponentiell zu
Invasive Landschneckenarten können heimische Arten verdrängen und der menschlichen Gesundheit schaden. Eine aktuelle Studie des Leibniz-Instituts zur Analyse des Biodiversitätswandels (LIB) schafft eine Übersicht über die exponentielle Zunahme und dynamische Ausbreitung von Landschneckenarten, die aus anderen Kontinenten nach Europa und in den Mittelmeerraum eingeschleppt wurden. Bislang fehlt es an Informationen über die Ausbreitung gebietsfremder Arten, insbesondere der wirbellosen Tiere wie Schnecken. Die soeben in dem Journal NeoBiota veröffentlichte LIB-Studie liefert eine Grundlage für Entscheidungen über weitere Maßnahmen zur Kontrolle oder Ausrottung eingeführter Populationen.
Landschnecken kommt in Ökosystemen eine tragende Funktion zu. So zersetzen sie verrottende Pflanzen und spielen damit eine wichtige Rolle im Nährstoffkreislauf und bei der Bodenbildung. Jedoch: Immer mehr Arten werden über ihr Heimatgebiet hinaus verbreitet, in der Regel durch den Menschen, manchmal absichtlich, oft aber auch unbeabsichtigt durch Warenhandel oder Reisende.
„Trotz der Bemühungen, Listen gebietsfremder Arten zu erstellen, gibt es nicht einmal für Europa ein gut dokumentiertes Verzeichnis gebietsfremder wirbelloser Arten“, betont Prof. Dr. Bernhard Hausdorf, Sektionsleiter Mollusca im LIB.
Die Studie untersucht 22 Landschneckenarten, die aus anderen Kontinenten nach Europa und in den Mittelmeerraum eingeschleppt wurden. Die meisten von ihnen sind klein, leben von verwesenden Pflanzenteilen und sorgen offensichtlich kaum für Probleme. Dagegen können fleischfressende Arten die einheimischen Schnecken bedrohen und Arten, die sich von Gemüse und Salaten ernähren, können Schäden in der Landwirtschaft verursachen. Manche Arten dienen sogar als Wirte und Vektoren von Parasiten, die beispielsweise Hirnhausentzündung auslösen können und schaden so indirekt der menschlichen Gesundheit.
Zu den schädlichen Arten gehören die kürzlich aus dem tropischen Afrika in den Mittelmeerraum eingeschleppten Laevicaulis Arten und die afrikanische Riesenschnecke Lissachatina fulica. Sie können auf bewässerten landwirtschaftlichen Flächen oder in Gewächshäusern wirtschaftliche Schäden verursachen, indem sie die Ernte vernichten oder kontaminieren, sodass sie nicht mehr verkäuflich ist.
Bernhard Hausdorf arbeitet in seiner Studie Aufzeichnungen über Landschneckenarten auf, die nach 1492 aus anderen Regionen in die westpaläarktische Region, Europa und den Mittelmeerraum, eingeführt wurden und sich in freier Natur etabliert haben. Dabei beobachtet er, dass die Zahl der gebietsfremden Arten seit dem 19. Jahrhundert kontinuierlich zugenommen hat, ab den 1970er Jahren sogar exponentiell und dass sich die eingeschleppten Arten immer weiter ausgebreitet haben.
Innerhalb Europas siedeln sich die gebietsfremden Arten in der Regel von Süden nach Norden und von Westen nach Osten an. Dreizehn der 22 untersuchten Arten kamen aus Nordamerika, drei aus Afrika südlich der Sahara, zwei aus der australischen Region, drei wahrscheinlich aus der orientalischen Region und eine aus Südamerika.
Auch wenn sich Handelsbeziehungen und die Ausbereitung von Arten in Beziehung setzen lassen, ist nach Hausdorf in erster Linie das vorherrschende Klima entscheidend: „Die Ausbreitung vieler der eingeschleppten Arten, insbesondere der sich in Mittelmeergebiet ausbreitenden tropischen Arten, wird vermutlich durch den Klimawandel begünstigt.“
Originalpublikation:
Bernhard Hausdorf, “Distribution patterns of established alien land snail species in the Western Palaearctic Region”, NeoBiota, Pensoft
https://doi.org/10.3897/neobiota.81.96360

Dieser Beitrag wurde unter Wissenschaft/Naturschutz veröffentlicht. Setze ein Lesezeichen auf den Permalink.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert